

External interfaces in series Vortex86MX SoC

GPIO, PWM/SERVO, SPI, I2C, COM

Document version 1.1 7/2012

Content

1. Valid models	3
2. Connector description	3
3. Function block diagram	5
4. VCC	7
5. GPIO – General Purpose Input Output ports	7
5.1. Pinout	7
5.2. Electrical characteristics	
5.3. Programming	
5.4. GPIO vs. BIOS Setup	9
5.5. Performance	9
6. SPI – Serial Peripheral Interface bus	
6.1. Characteristics	
6.2. Pinout	
6.3. Programming	11
7. I2C – Inter integrated Circuit interface	
7.1. Characteristics	12
7.2. Pinout	12
7.3. Programming	13
8. Serial ports	14
8.1. Characteristics	14
8.2. Pinout	15
8.3. Programming	15
9. PWM - Pulse Width Modulation	
9.1. Pinout	16
9.2. Electrical characteristics	16
9.3. Performance	16
9.4. Programming	17
10. Microcontroller 8051 notice	17
11. Software libraries	18
11.1. RoBoIO library	
11.2. How to use	
12. Appendix A - Technical Reference	

1. Valid models

Information provided in this manual fully valid for series with externalized GPIO/PWM/SPI/I2C ports

TC-261MXI	GPIO, 3x RS232, 512MB RAM
TC-261MXGI	GPIO, 3x RS232, 1GB RAM
TC-261MXIC	GPIO, 1x RS485, 2x RS232, 512MB RAM
TC-261MXGIC	GPIO, 1xRS485, 2x RS232, 1GB RAM

There are models with same structure which does not have GPIO header external. For them are information also valid but does not have practical usage, because missing physical interface there. Here just for notice:

a) only information related with COM ports valid for:

TC-261MXC	2x RS232, 1x RS485, 512MB RAM
TC-261MXGC	2x RS232, 1x RS485, 1GB RAM

b) none externalized interface are on models:

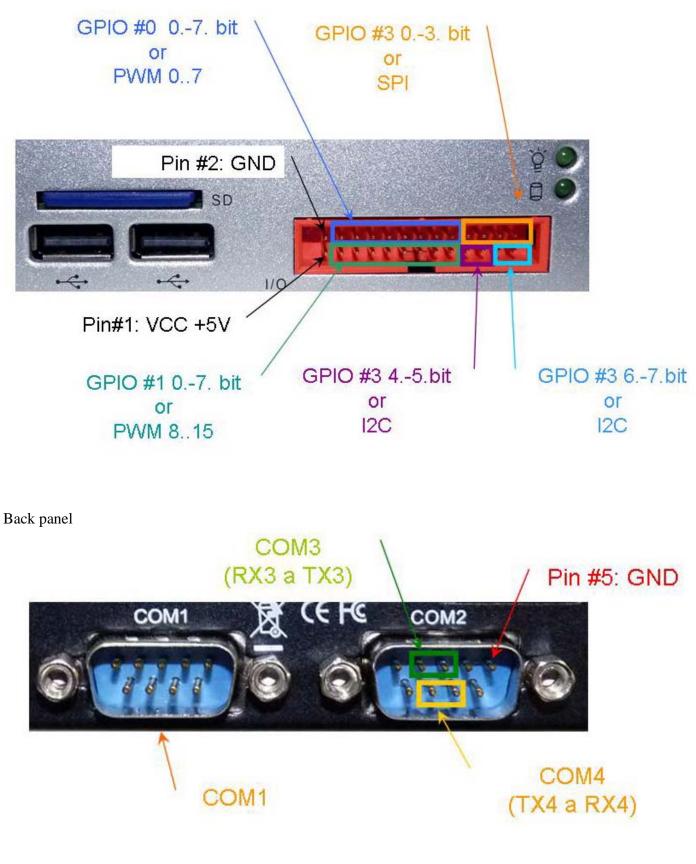
TC-261MXH TC-261MXGH TC-261MXK

2. Connector description

Devices have on front panel multipurpose box header 26-pin. This is connector 2 row, 2x13, pitch 2.54mm. Many suppliers provide this connector typically for flat cables

As you can see from picture there is available power pin, GND and sets of GPIO, PWM, SPI and I2C pins. Their functionalities are possible to select in BIOS Setup or by programming PCI register in run time. So their can be also switched during operations by user's application.

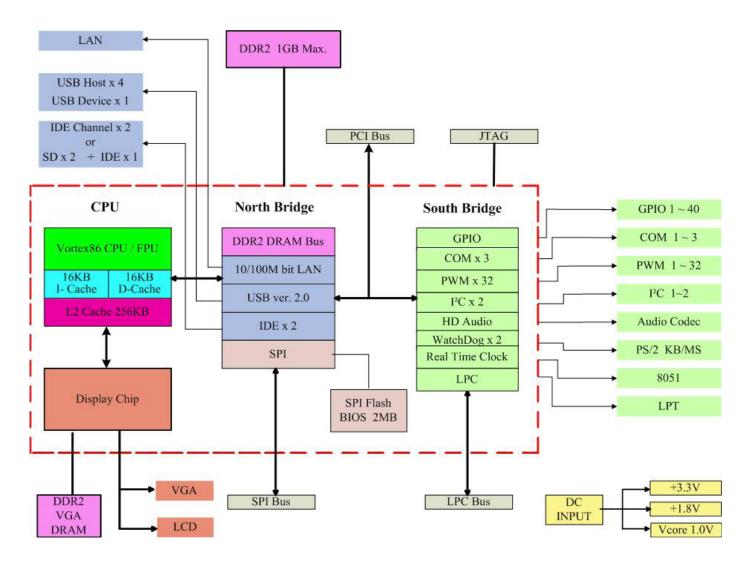
Totally there are available ports:

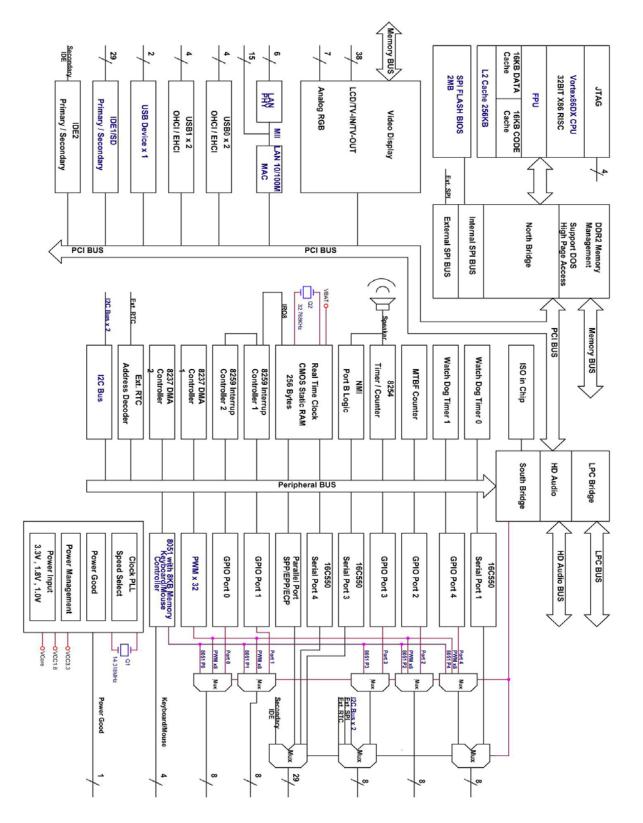

GPIO: 3 groups of ports, each with 8-bit input/output, totally 24 bit

PWM: 2 groups, each with 8-bit, totally 16 PWM ports

- SPI: 1 port
- I2C: 2 ports
- COM: 3 ports

External interfaces Vortex86MX series


Front panel


3. Function block diagram

Vortex86MX provides several types of interfaces for general usage in the system.

Refer to Vortex86MX functions block diagram:

Detailed scheme of Vortex86MX connections

Have to note those in detailed schemes are **not** externally accessible Parallel port and GPIO Port 2.

4. VCC

User can feed devices connected on GPIO port through pin VCC with voltage of 5V. However there should be considered their limitations.


VCC pin has in circuit PTC fuse which limits current from this output. Maximal continuous current is **1,1A** (**5,5W**). For short period is allowed to feed 1,3A. When device feeds more than 1,3A then PTC device starts to trip into high impedance state. Trip time is about 0,3s @ 8A. Maximal current which can PTC withstand without damage is 40A.

5. GPIO – General Purpose Input Output ports

GPIO ports are commonly used for relatively slow data acquisitions or for signaling external devices. On devices all GPIO pins are independent and can be configured as inputs or outputs, with or without pull-up/pull-down resistors.

5.1. Pinout

GPIO port #0, #1 are shared with PWM #0, #1 GPIO port #3 is shared with SPI and I2C ports

Numbering of pins is from down to top and left to right when looking on open connector from outside. GPIO group #0: pin 4,6,8,10,12,14,16,17 in order 0.-7. bit GPIO group #1: pin 3,5,7,9,11,13,15,17 in order 0.-7. bit GPIO group #3: pin 20,22,24,26,19,21,23,25 in order 0.-7. bit

26-pin, 2.54mm, 2 row												
Pin#	Signal Name	Pin#	Signal Name									
1	VCC	2	GND									
3	GP10	4	GP00									
5	GP11	6	GP01									
7	GP12	8	GP02									
9	GP13	10	GP03									
11	GP14	12	GP04									
13	GP15	14	GP05									
15	GP16	16	GP06									
17	GP17	18	GP07									
19	GP34	20	GP30									
21	GP35	22	GP31									
23	GP36	24	GP32									
25	GP37	26	GP33									

Pin description, box header on front panel
26-pin, 2.54mm, 2 row

5.2. Electrical characteristics

GPIO in output mode can drive 16mA.

GPIO in input mode are unterminated and are pulled-high by 75kOhm resistor.

Note:

For testing purposes you can easily check state in which ports are. Typically if are in output state you will measure 0V or 3.3V. In input state will measure 2.5V

5.3. Programming

Description of programming GPIO ports provided in sample codes.

	Port #0	Port #1	Port #2	Port #3	Port #4	Description
Data Register	78H	79H	7AH	7BH	7CH	
Direction Register	98H	99H	9AH	9BH	9CH	0: GPIO pin is input mode 1: GPIO pin is output mode

Here is GPIO summary for direction and data registers:

If send value 0FH to port 98H, it means that GPIO port0 [7-4] are input mode and port[3-0] are output mode. If send value 00H to port 98H, it means that GPIO port0 [7-0] are input mode.

If send value FFH to port 98H, it means that GPIO port0 [7-0] are output mode.

If send value 03H to port 98H, it means that GPIO port0 [7-2] are input mode and port[1-0] are output mode.

5.4. GPIO vs. BIOS Setup

GPIO port modes can be re-setup in program code by direct writing into PCI registers. If this setup is not done then is valid what is setup in BIOS. So if the pin is setup by BIOS into I2C mode then will ignore GPIO write/reads.

Recommend to see Appendix A - Technical Reference

5.5. Performance

Tested maximum possible frequency of switching of GPIO ports using software loop which is doing just on/off operation on GPIO ports under Linux (Debian 6.0) and DOS (FreeDOS 1.1) is period approximately 550kHz. Is necessary to note that such period is unstable and fluctuate 340-600kHz.

Should be noted that for reading GPIO ports there is commonly possible to use interrupt. Port can have delay of time on which signal must be presented on GPIO to be interrupt initiated. The range of time is from 2ms to 100ms. Signal can be defined if should be high or low.

6. SPI – Serial Peripheral Interface bus

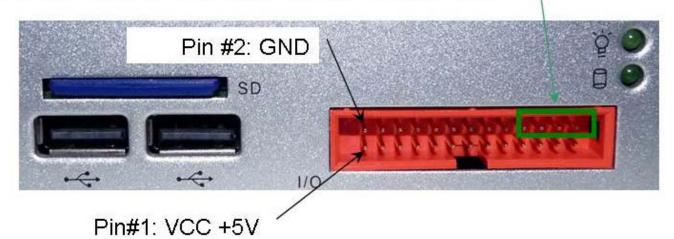
SPI ports are commonly used for fast data acquisitions from others integrated circuits. It is ideal interface to be connected on external ADC, DAC and other devices.

SPI interface discussed in this chapter is hardware controlled. Please do not mix with software emulated SPI interface (much slower).

6.1. Characteristics

SPI interface is intended only for high speed devices and is half duplex mode only. Has maximum speed 150Mbps, minimum speed 10Mbps.

Support only two clock modes: CPOL = 0, CPHA = 0CPOL = 1, CPHA = 0


Good description for modes http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

Clock modes are: 18750kHz, 15000kHz, 12500kHz, 10000kHz, 10714kHz, 11538kHz, 13636kHz, 16666kHz 21400kHz, 25000kHz, 30000kHz, 37000kHz, 50000kHz, 75000kHz, 150000kHz. Clock 21.4MHz counted as default.

6.2. Pinout

SPI is shared with GPIO group #3. SPI is using pin 20,22,24,26.

SPI interface SS (ENABLE), CLOCK (SCK), MOSI (SDO), MISO (SDI)

Signals are: pin 20: SS (ENABLE) pin 22: CLOCK (SCK) pin 24: MOSI (SDO) pin 26: MISO (SDI)

pin 2: common GND

6.3. Programming

Description of programming SPI is provided in sample codes and by libraries.

Recommend to see Appendix A - Technical Reference with registry description.

7. I2C – Inter integrated Circuit interface

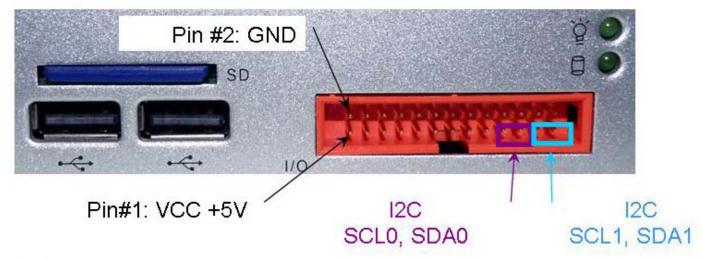
I2C is typically used for connection of low and medium speed peripheral devices using two wire bus.

7.1. Characteristics

I2C interface in device support both master and slave modes. Support 10bit address (master only).

Support all speed modes

- standard mode (up to 100 kbps)
- fast mode (up to 400 kbps)
- high-speed mode (up to 3.3 Mbps)


Note that speed setup can be any speed up to 3.3Mbps, there are not fixed speed steps.

7.2. Pinout

I2C interfaces are shared with GPIO group #3.

I2C group #0 is using pin 19,21.

I2C group #1 is using pin 23,25.

Signals are: pin 19: SCL0 pin 21: SDA0 pin 23: SCL1 pin 25: SDA1

pin 2: common GND

7.3. Programming

Description of programming I2C is provided in sample codes and by libraries. Special notice should be taken for devices which are addressed 10bit or 7bit.

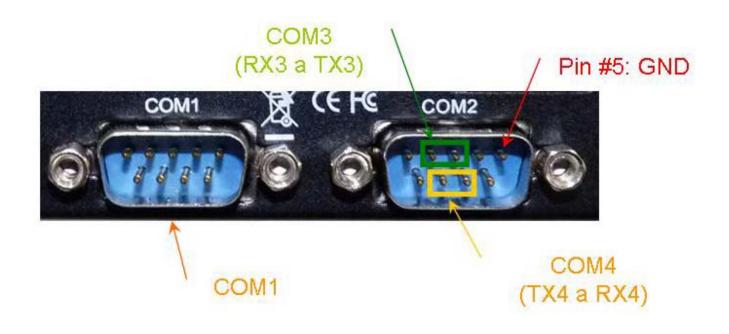
8. Serial ports

Serial ports COM1, COM3 and COM4 can be used as standard COM ports in Windows, Linux and DOS.

8.1. Characteristics

Serial ports in devices are in back panel.

Port COM1 is labeled connector "COM1". It is standard signals COM1 port on connector DB9. This port can be uased fully as standard COM port, f.e. for RS-232 connection of serial modems.


Port COM3 and COM4 are both on connector labeled "COM2". They have only signal RX and TX available. This port can be used only for devices which do not need controlling signals. Typical applications are UART interfaces.

User's can modify in BIOS all parameters of ports: IRQ, I/O base address and default speed.

Ports have speed from 2400-115200 as standard speed. It has also boosted speeds 31 200 - 748 800 bps.

Please note:

Ports can be RS-232, RS-422 or RS-485 type. However his type is given by model and regardless of setup in BIOS. So if user will setup device which is RS-232 as RS-485 port, it will anyway stays and will work as RS-232.

8.2. Pinout

Connector DB9 (9pin) labeled as "COM1" COM1: Pin 1: DCD for RS-232 / TX- for RS-422 / Negative for RS-485 Pin 2: RxD for RS-232 / TX+ for RS-422 / Positive for RS-485 Pin 3: TxD for RS-232 / RX+ for RS-422 Pin 4: DTR for RS-232 / RX- for RS-422 Pin 5: GND Pin 6: DSR for RS-232 Pin 7: RTS for RS-232 Pin 8: CTS for RS-232 Pin 9: RI

Connector DB9 (9pin) labeled as "COM2"

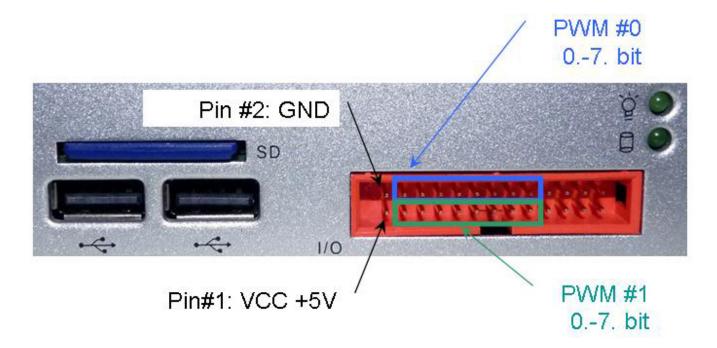
COM3: Pin 2 RxD Pin 3 TxD

COM4: Pin 8 RxD Pin 7 TxD

Common: Pin 5 GND

Note: pinout is designed in such way that if not COM4 used there is not necessary to change piut of connection cable.

8.3. Programming


Ports can be used as standard ports without special programming. Anyway also sample codes and libraries provided.

9. PWM - Pulse Width Modulation

PWM ports are typical used for controlling of power switches for stepper motors and servos. They could be also used for communication devices or communication interface emulations.

9.1. Pinout

PWM #0, #1 are shared with GPIO #0, #1

9.2. Electrical characteristics

PWM port can drive **16mA**. Value can be tuned from 4mA to16mA by programming PCI registers. 16mA is default value.

9.3. Performance

Resolution of PWM self is up to **20ns** (50MHz clock of counter). PWM is hardware feature and works independently of CPU load. When applied with servos and libraries mentioned later can control feedback pulses +/- 1us.

PWM is possible to be programmed for exact number of pulses (counting mode) or into continual method. If in counting mode then is possible to check end of sequence and to program by software other sequence. Time to detect near-end of counting and start new sequence is about 8us (Linux Debian).

External interfaces Vortex86MX series

End of counting sequence is possible to detect by three methods:

- 1. use interrupt end of counting will call interrupt service procedure
- 2. by polling the Interrupt Status Register to check if interrupt should come
- 3. by polling the Registry Counter field in Control Register to check how many counts to end pending

9.4. Programming

Description of programming PWM is provided in sample codes and by libraries. There are available samples and libraries for direct PWM usage as low level function. Additionally there are libraries allows usage PWM for servos control with already prepared libraries for intelligent servo controls.

For better understanding is recommended to study documents related to "Intel 8254 programmable interval timer" and Appendix A - Technical Reference

10. Microcontroller 8051 notice

The SoC have also microcontroller 8051 inside. However this is undocumented possibility in device. User can met that setting is shared in BIOS with GPIO. Currently none documentation is provided or planed to be provided.

11. Software libraries

Most comprehensive software libraries for this device counts development for Roboard platform. This platform is designed by SoC's authors and is specialized for robotics's applications. Because most components and architecture is identical then such libraries are applicable directly or with very little modifications.

Home page of project <u>http://www.roboard.com/</u>

We should note that hardware (RB-100, RB110 etc.) for this project can be also sourced from us. Even user have took in consideration that those equipment is considered for a bit different application. It means there is not embedded VGA, no case etc.

11.1. RoBolO library

Whole project is build around RoBOIO library and has those above all significant points:

- open-source library
- free for academic & commercial use
- everyone is permitted to redistribute and/or modify it without restriction

Popular OS supported, library is cross-platformed

- Linux
- Windows XP
- Windows CE 6.0
- DOS

Wrappers for development libraries available

- .NET (C# and VB.NET) for .NET Framework 2.0 & above
- Visual Basic 6.0
- Borland C++ Builder
- JAVA for Windows XP
- Python for Windows XP

Currently (version 1.8) supported I/O functions which are directly applicable with discussed devices

- GPIO
- PWM
- SPI hardware
- I2C hardware
- COM (RS-232, RS-485, TTL)

Additionally there libraries which gives very good idea for own project, they could be used directly or are very good for inspirations of own projects

• SPI software emulated for slow SPI equipment

External interfaces Vortex86MX series

- I2C software emulated for nonstandard device
- A/D complete libraries for connection on ADC circuit by Analog AD79x8 family on SPI
- RC servo control for many servos (KONDO, HiTEC,....)
 - Easier integration for sensors and information for real applications of
 - A/D, SPI, I2C: accelerometer, gyroscope, ...
 - o COM: GPS, AI servos, ...
 - o PWM: RC servos, DC motors, ...
 - o GPIO: bumper, infrared sensors, on/off switches, ...
 - o USB: webcam, ...
 - o Audio in/out: speech interfaces

For developers there is big advantage thanks wide range of tools they can freely use, because platform is x86 based and almost all resources on PC can be employed as development tools

- Languages: C/C++/C#, Visual Basic, Java, Python, LabVIEW
- Libraries: OpenCV, SDL, LAPACK
- IDE: Visual Studio, DevVisual Dev--C++, Eclipse
- GUI: Windows Forms, GTK

11.2. How to use

From home page of project <u>http://www.roboard.com/</u> is recommend to download latest versions. Is very good idea to read introduction documents. Highly recommended document which gives overview is **"RoBoIO 1.8 Introducion Slide"**

Then download libraries and related to planed OS. Is recommended to follow guides attached to libraries and recompile them for your OS.

After successful compilation for your OS is necessary to modify one or two file to allow full operations of libraries on discussed platform.

A]

In fact will enough to switch-off Roboard platform checks. For this case developers already prepared code and in code is parameter ROBOIO. Unfortunately at least in version 1.8 code not completely clean up so there are two ways how to customize code for your platform.

in file ROBOIO/libsrc/define.h remove line *#define ROBOIO (0x0181)* or do same using parameter for compiler.

This will be completely ok if code is cleaned up and it will allow to skip codes sections which verifying if hardware is exactly RoBoard. Unfortunately is not, so during compilation you will met procedures which claimes for missing *roboio_GetRBVersion()*. This is then easily solved using section

#ifdef ROBOIO

#endif

...

Please check in file ROBOIO/libsrc/i2c.cpp modify those functions: i2cResetPin(void) and i2cClearResetPin(void)

#ifdef ROBOIO
if (roboio_GetRBVer()!=) {... return false};
#endif

Please check in file ROBOIO/libsrc/spi.cpp modify those functions: spi_DisableSS(void) and spi_EnableSSn(void)

#ifdef ROBOIO
if (roboio_GetRBVer()!=) {... return false};
#endif

Please note that this patch has drawback – all samples written then in package RoboKit counts with ROBOIO define, so will claim for functions related with this define. Maybe faster for first usage of library is to use a bit ugly patch mentioned in variant B]

B]

This kind of patch modifies source coude such way that you will then declared your Vortex86DX or MX board as RB100 for RoboIO libraries. Advantage is that you can use for future regulary sample files even they are written for Roboard without any modifications.

Please check in file ROBOIO/libsrc/common.cpp modify those functions: Roboio_CheckRBVer(void) find line *if* (*cpu_id* == *CPU_VORTEX_DX_1*) *return true;* and add after him line *if* (*cpu_id* == *CPU_VORTEX_MX*) *return true if* (*cpu_id* == *CPU_VORTEX_MX*) *return true*;

Please check in file ROBOIO/libsrc/io.cpp modify those function: Io_init(void) find line which content following condition *if* ((*io_CpuID*() != *CPU_VORTEX_DX_1*) && (*io_CpuID*() != *CPU_VORTEX_DX_2*) && (*io_CpuID*() != *CPU_VORTEX_DX_3*))

and modify them to accept also CPU_VORTEX_MX and CPU_VORTEX_MX_PLUS

if ((*io_CpuID*() != *CPU_VORTEX_DX_1*) && (*io_CpuID*() != *CPU_VORTEX_DX_2*) && (*io_CpuID*() != *CPU_VORTEX_DX_3*) && (*io_CpuID*() != *CPU_VORTEX_MX*) && (*io_CpuID*() != *CPU_VORTEX_MX_PLUS*))

With this patch you can call libraries and claim them that you have *RB100* board. You can compile sample programs from RoboKit and try their functionalities immediately on your platform.

Note that patch A] and patch B] does not collide.

12. Appendix A - Technical Reference

Description of Vortex86DX and Vortex86MX series registers.

1. PCI Configuration Registers

I/O Port:	CF8h – Accessed as a Dword
Register Name:	PCI Configuration Address Register
Reset Value:	0000000h

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
C E			ł	Rsv	d						В	N						DN				FN				R	N			Rs	vd

Configuration Address Register is a 32-bit register accessed only when referenced as a DWORD. A byte or word reference will pass through the Configuration Address Register onto the PCI bus as an I/O cycle.

Bit	Name	Attribute	Description
			Configuration Enable.
31	CE	R/W	When this bit is set to 1, accesses to PCI configuration space are enabled. If this bit is
			reset to 0, accesses to PCI configuration space are disabled.
30-24	Rsvd	RO	Reserved.
			Bus Number.
			When the bus number is programmed to 00h, the target of the configuration cycle is
			either the North-Bridge or the PCI Device that is connected to the North-Bridge. If the
23-16	BN	R/W	bus number is programmed to 00h and the North-Bridge is not the target, a Type 0
			configuration cycle is generated on PCI Bus. IF the bus number is non-zero, a Type 1
			configuration cycle is generated on PCI bus with the bus number mapped to AD[23:16]
			during the address phase.
			Device Number.
15-11	DN	R/W	This field selects one agent on the PCI bus. During a Type 1 configuration cycle, this
13-11	DIN	17/17	field is mapped to AD[15:11]. During a Type 0 configuration cycle, this field is decoded
			and one of AD[31:11] is driven to 1.
			Function Number.
10-8	FN	R/W	This field allows the configuration registers of a particular function in a multi-function
10-0		1.7.4.4	device to be accessed. The Vortex86DX North Bridge only responds to configuration
			cycle with a function number of 000b.
			Register Number.
7-2	RN	R/W	This field selects one register within a particular Bus, Device, and Function as specified
			by the other fields in the Configuration Address Register.
1-0	Rsvd	RO	Reserved.

I/O Port:	FCh – Accessed as a Dword											
Register Name:	PCI Configuration Data Register											
Reset Value:	0000000h											
31 30 29 28 27 2	1 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0											
	CDR											

Configuration Data Register is a 32-bit read/write window into configuration space. The portion of configuration space that is referenced by Configuration Data Register is determined by the contents of Configuration Address Register.

Bit	Name	Attribute	Description
			If bit 31 of PCI Configuration Address Register is 1, any I/O reference that falls in the
31-0	CDR	R/W	PCI Configuration Data Register space is mapped to configuration space using the
			contents of PCI Configuration Address Register.

2.1.GPIO

40 GPIO pins are provided by the Vortex86DX/MX for general usage in the system. All GPIO pins are independent and can be configured as inputs our outputs; when configured as outputs, pins have 16 mA drive capability and are unterminated; when configured as inputs, pins are pulled-high with a 75k ohm resistance.

GPIO port 0,1 and 2 are always free for use normally. In your system is possible that some GPIO group is not externaly connected.

See further Internal Peripheral Feature Control Register in chapter Servo Registry for description how to control GPIO availability.

Setup GPIO Direction

	Port 0	Port 1	Port 2	Port 3	Port 4	Description
Data Register	78H	79H	7AH	7BH	7CH	
Direction Register	98H	99H	9AH	9BH	9CH	0: GPIO pin is input mode
						1: GPIO pin is output mode

Here is GPIO direction and data registers:

If send value 0FH to port 98H, it means that GPIO port0 [7-4] are input mode and port[3-0] are output mode.

If send value 00H to port 98H, it means that GPIO port0 [7-0] are input mode.

If send value FFH to port 98H, it means that GPIO port0 [7-0] are output mode.

If send value 03H to port 98H, it means that GPIO port0 [7-2] are input mode and port[1-0] are output mode.

2.2. GPIO with Interrupt

GPIO port 0 & 1 in Vortex86DX support interrupt trigger. Programmers can use interrupt to instead of polling GPIO to save CPU performance. GPIO port0 interrupt registers are at offset DCh~DFh in PCI south bridge and GPIO1 registers are at offset E0h~E3h.

Here are steps to setup GPIO to trigger interrupt:

1. Configure interrupt mask register to determine which GPIO can trigger interrupt individually.

2. Set trigger level (high or low) for each GPIO.

3. Set period time that interrupt will be generated while the event loading time of any one of GPIO[7-0] is longer than the time parameters.

4. Select IRQ.

5. Set interrupt trigger once or continuously.

2.3. GPIO Interrupt Relative Registers

Register Offset:				DCh					
Register Name:				GPIO P	ORT0	Interrup	t Mask	Registe	۶r
Reset Value:			00h						
	7	6	5	4	3	2	1	0	
				POI	MTM				

Bit	Name	Attribute	Description
			GPIO PORT0 Interrupt Mask Register: This mask register is workable when Port0[x] is
		INTM R/W	at input or output mode. If Port0[x] is at output mode and interrupt level set as high, the
7-0			interrupt will occur base on the GPIO_PORT0 interrupt control register.
7-0	FUINTIN		Bit0 for Port0[0], Bit1 for Port0[1],, Bit7 for Port0[7]
			1: Enable Interrupt happen
			0: Disable interrupt

Registe	r Offse	et:	DDh				
Registe	r Namo	e:	GPIO P	ORT0	Interrup	t Level	Register
Reset Value:			FFh				
7 6 5			4	3	2	1	0
			P0I	NTL			

Bit	Name	Attribute	escription				
			GPIO PORT0 Interrupt Level Register				
7-0		R/W	Bit0 for Port0[0], Bit1 for Port0[1],, Bit7 for Port0[7]				
7-0	POINTL	r///	1: Interrupt activated on Port0 low level				
			0: Interrupt activated on Port0 high level				

F	Registe	r Offse	et:	DEh					
Register Name:				GPIO P	ORT0	Interrup	t Contr	ol Regi	ster
Reset Value:			00h						
	7	7 6 5		4	3	2	1	0	
En IKP					POI	NTR			

Bit	Name	Attribute	Description
7	En	R/W	GPIO PORT0 Interrupt Function Enable bit.
1		r/w	0: Disable (Default)

Bit	Name	Attribute	scription						
			nable						
			Interrupt Keep Period.						
			Interrupt will be generated while the event loading time of any one of port0[7-0] is longer						
			than the following time parameters . Reference 14.318MHz						
			000: 002ms						
			001: 005ms						
6-4	IKP	R/W	010: 010ms						
			011: 020ms						
			100: 040ms						
			101: 060ms						
			110: 080ms						
			111: 100ms						
			GPIO PORT0 Interrupt Routing Register						
			<u>Bit 11 Bit 10 Bit 9 Bit 8</u> Routing Table						
			0 0 0 Disable.						
			0 0 0 1 IRQ[9]						
			0 0 1 0 IRQ[3]						
			0 0 1 1 IRQ[10]						
			0 1 0 0 IRQ[4]						
			0 1 0 1 IRQ[5]						
3-0	POINTR	R/W	0 1 1 0 IRQ[7]						
			0 1 1 1 IRQ[6]						
			1 0 0 0 IRQ[1]						
			1 0 0 1 IRQ[11]						
			1 0 1 0 Reserved						
			1 0 1 1 IRQ[12]						
			1 1 0 0 Reserved 1 1 0 1 IRQ[14]						
			1 1 1 0 Reserved						
			1 1 1 IRQ[15]						

Registe	er Offse	et:	DFh					
Register Name:			GPIO P	ORT0	Interrup	t Mode	Contro	ol Register
Reset V	/alue:		00h					
7	6	5	4	3	2	1	0	
			P0IN	TCTL				

Bit	Name	Attribute	Description
7-0	POINTCTL	R/W	GPIO PORT0 Interrupt Control Register

	Bit0 for Port0[0], Bit1 for Port0[1],, Bit7 for Port0[7]
	1: trigger the interrupt continuously if level is activated and match interrupt keep period
	settings.
	0: Trigger the Interrupt once if level is activated.

Registe	er Offse	et:	E0h				
Registe	er Name	e:	GPIO F	ORT1	Interrup	t Mask	Register
Reset Value:			00h				
7	6	5	4	3	2	1	0
			P1II	NTM			

Bit	Name	Attribute	Description
7-0	P INTM	R/W	GPIO PORT1 Interrupt Mask Register: This mask register is workable when Port1[x] is at input or output mode. If Port1[x] is at output mode and interrupt level set to high, the interrupt will occur base on the GPIO_PORT1 interrupt control register.
			Bit0 for Port1[0], Bit1 for Port1[1],, Bit7 for Port1[7] 1: Enable Interrupt happen 0: Disable interrupt

Register Offset:			E1h					
Register Name:			GPIO P	ORT1	nterrup	t Level	Registe	۶r
Reset V	/alue:		FFh					
7	6	5	4	3	2	1	0	
				NTL				

Bit	Name	Attribute	Description
	P1INTL R/W	GPIO PORT1 Interrupt Level Register	
7.0		ITL R/W	Bit0 for Port1[0], Bit1 for Port1[1],, Bit7 for Port1[7]
7-0			1: Interrupt activated on Port1 low level
			0: Interrupt activated on Port1 high level

Register Offset:				E2h					
Register Name:			GPIO P	ORT1	Interrup	t Contr	ol Regis	ster	
Reset Value:		00h							
	7	6	5	4	3	2	1	0	
	En IKP				P1II	NTR			

Bit	Name	Attribute	Description			
			GPIO PORT1 Interrupt Function Enable bit.			
7	En	R/W	0: Disable (Default)			
			1: Enable			
			Interrupt Keep Period.			
			Interrupt will be generated while the event loading time of any one of port0[7-0] is longer			
			than the following time parameters .			
			Reference 14.318MHz			
			000: 002ms			
6-4	IKP	R/W	001: 005ms			
0-4		1.7/ V V	010: 010ms			
			011: 020ms			
			100: 040ms			
			101: 060ms			
			110: 080ms			
			111: 100ms			
			GPIO PORT1 Interrupt Routing Register			
			<u>Bit 11</u> Bit 10 Bit 9 Bit 8 Routing Table			
			0 0 0 Disable.			
			0 0 0 1 IRQ[9]			
			0 0 1 0 IRQ[3]			
			0 0 1 1 IRQ[10]			
			0 1 0 0 IRQ[4]			
			0 1 0 1 IRQ[5]			
3-0	P1INTR	R/W	0 1 1 0 IRQ[7]			
			0 1 1 1 IRQ[6]			
			1 0 0 0 IRQ[1]			
			1 0 0 1 IRQ[11]			
			1 0 1 0 Reserved			
			1 0 1 1 IRQ[12]			
			1 1 0 0 Reserved			
			1 1 0 1 IRQ[14]			
			1 1 1 IRQ[15]			

Registe	er Offse	et:	E3h					
Registe	er Name	e:	GPIO P	ORT1	Interrup	t Mode	Contro	l Register
Reset V	alue:		00h					
7	6	5	4	3	2	1	0	
			P1IN	TCTL				

Bit	Name	Attribute	Description
			GPIO PORT1 Interrupt Control Register
			Bit0 for Port1[0], Bit1 for Port1[1],, Bit7 for Port1[7]
7-0	P1INTCTL	R/W	1: trigger the interrupt continuously if level is activated and match interrupt keep period
			settings.
			0: Trigger the Interrupt once if level is activated.

3. Servo Registers

SERVO Registers

(Base Address Refers to the Register of index D3h-D0h, IDSEL = AD18/SB of PCI Configuration Register)

IO Address	Register Name
BA + 00H	SERVO Interrupt Mask Register
BA + 04H	SERVO Interrupt Status Register
BA + 08H	SERVO Sync Register
BA + 0CH	SERVO[0] Pulse Low Count Register
BA + 10H	SERVO[0] Pulse High Count Register
BA + 14H	SERVO[0] Control Register
BA + 18H	SERVO[1] Pulse Low Count Register
BA + 1CH	SERVO[1] Pulse High Count Register
BA + 20H	SERVO[1] Control Register
BA + 24H	SERVO[2] Pulse Low Count Register
BA + 28H	SERVO[2] Pulse High Count Register
BA + 2CH	SERVO[2] Control Register
BA + 30H	SERVO[3] Pulse Low Count Register
BA + 34H	SERVO[3] Pulse High Count Register
BA + 38H	SERVO[3] Control Register
BA + 3CH	SERVO[4] Pulse Low Count Register
BA + 40H	SERVO[4] Pulse High Count Register
BA + 44H	SERVO[4] Control Register
BA + 48H	SERVO[5] Pulse Low Count Register
BA + 4CH	SERVO[5] Pulse High Count Register
BA + 50H	SERVO[5] Control Register
BA + 54H	SERVO[6] Pulse Low Count Register
BA + 58H	SERVO[6] Pulse High Count Register
BA + 5CH	SERVO[6] Control Register
BA + 60H	SERVO[7] Pulse Low Count Register
BA + 64H	SERVO[7] Pulse High Count Register
BA + 68H	SERVO[7] Control Register
BA + 6CH	SERVO[8] Pulse Low Count Register
BA + 70H	SERVO[8] Pulse High Count Register
BA + 74H	SERVO[8] Control Register
BA + 78H	SERVO[9] Pulse Low Count Register
BA + 7CH	SERVO[9] Pulse High Count Register
BA + 80H	SERVO[9] Control Register
BA + 84H	SERVO[10] Pulse Low Count Register

IO Address	Register Name
BA + 88H	SERVO[10] Pulse High Count Register
BA + 8CH	SERVO[10] Control Register
BA + 90H	SERVO[11] Pulse Low Count Register
BA + 94H	SERVO[11] Pulse High Count Register
BA + 98H	SERVO[11] Control Register
BA + 9CH	SERVO[12] Pulse Low Count Register
BA + A0H	SERVO[12] Pulse High Count Register
BA + A4H	SERVO[12] Control Register
BA + A8H	SERVO[13] Pulse Low Count Register
BA + ACH	SERVO[13] Pulse High Count Register
BA + B0H	SERVO[13] Control Register
BA + B4H	SERVO[14] Pulse Low Count Register
BA + B8H	SERVO[14] Pulse High Count Register
BA + BCH	SERVO[14] Control Register
BA + C0H	SERVO[15] Pulse Low Count Register
BA + C4H	SERVO[15] Pulse High Count Register
BA + C8H	SERVO[15] Control Register
BA + CCH	SERVO[16] Pulse Low Count Register
BA + D0H	SERVO[16] Pulse High Count Register
BA + D4H	SERVO[16] Control Register
BA + D8H	SERVO[17] Pulse Low Count Register
BA + DCH	SERVO[17] Pulse High Count Register
BA + E0H	SERVO[17] Control Register
BA + E4H	SERVO[18] Pulse Low Count Register
BA + E8H	SERVO[18] Pulse High Count Register
BA + ECH	SERVO[18] Control Register
BA + F0H	SERVO[19] Pulse Low Count Register
BA + F4H	SERVO[19] Pulse High Count Register
BA + F8H	SERVO[19] Control Register
BA + FCH	SERVO[20] Pulse Low Count Register
BA + 100H	SERVO[20] Pulse High Count Register
BA + 104H	SERVO[20] Control Register
BA + 108H	SERVO[21] Pulse Low Count Register
BA + 10CH	SERVO[21] Pulse High Count Register
BA + 110H	SERVO[21] Control Register
BA + 114H	SERVO[22] Pulse Low Count Register
BA + 118H	SERVO[22] Pulse High Count Register
BA + 11CH	SERVO[22] Control Register
BA + 120H	SERVO[23] Pulse Low Count Register

Technical Reference

IO Address	Register Name
BA + 124H	SERVO[23] Pulse High Count Register
BA + 128H	SERVO[23] Control Register
BA + 12CH	SERVO[24] Pulse Low Count Register
BA + 130H	SERVO[24] Pulse High Count Register
BA + 134H	SERVO[24] Control Register
BA + 138H	SERVO[25] Pulse Low Count Register
BA + 13CH	SERVO[25] Pulse High Count Register
BA + 140H	SERVO[25] Control Register
BA + 144H	SERVO[26] Pulse Low Count Register
BA + 148H	SERVO[26] Pulse High Count Register
BA + 14CH	SERVO[26] Control Register
BA + 150H	SERVO[27] Pulse Low Count Register
BA + 154H	SERVO[27] Pulse High Count Register
BA + 158H	SERVO[27] Control Register
BA + 15CH	SERVO[28] Pulse Low Count Register
BA + 160H	SERVO[28] Pulse High Count Register
BA + 164H	SERVO[28] Control Register
BA + 168H	SERVO[29] Pulse Low Count Register
BA + 16CH	SERVO[29] Pulse High Count Register
BA + 170H	SERVO[29] Control Register
BA + 174H	SERVO[30] Pulse Low Count Register
BA + 178H	SERVO[30] Pulse High Count Register
BA + 17CH	SERVO[30] Control Register
BA + 180H	SERVO[31] Pulse Low Count Register
BA + 184H	SERVO[31] Pulse High Count Register
BA + 188H	SERVO[31] Control Register

I/O Port:	BA + 00h
Register Name:	SERVO Interrupt Mask Register
Reset Value:	0000000h
31 30 29 28 27 26	6 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SIM[31-0]

Bit	Name	Attribute	Description
			SERVO[31-0] Interrupt Mask Register
31-0	SIM[31-0] R/W	R/W	1: Enable Interrupt
			0: Disable Interrupt

I/O Port:BA + 04hRegister Name:SERVO Interrupt Status RegisterReset Value:0000000h

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SIS[31-0]

Bit	Name	Attribute	Description
			SERVO[31-0] Interrupt Status Register
31-0	SIS[31-0]	R/W	1: Interrupt happen and write "1" to clear
			0: No Interrupt

I/O Port:	BA + 08h
Register Name:	SERVO Sync Status Register
Reset Value:	0000000h

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SYNC	[31-0]
------	--------

Bit	Name	Attribute	Description
			SERVO[31-0] Sync Register
31-0	SYNC[31-0]	R/W	1: SERVO will be hold
			0: SERVO without hold

 I/O Port:
 BA + 0CH, 18H, 24H, 30H, 3CH, 48H, 54H, 60H, 6CH, 78H, 84H, 90H, 9CH, A8H, B4H, C0H,

 CCH, D8H, E4H, F0H, FCH, 108H, 114H, 120H, 12CH, 138H, 144H, 150H, 15CH, 168H, 174H,

180H

Register Name: SERVO Pulse Low Register

Reset Value: 0000000h

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPL

Bit	Name	Attribute	Description
31-0	SPL	R/W	SERVO Pulse Low Register. SERVO clock is 10MHz

I/O Port: BA + 10H, 1CH, 28H, 34H, 40H, 4CH, 58H, 64H, 70H, 7CH, 88H, 94H, A0H, ACH, B8H, C4H, D0H, DCH,
E8H, F4H,100H,10CH,118H,124H,130H,13CH,148H,154H,160H,16CH,178H,184H
Register Name: SERVO Pulse High Register

Reset Value: 0000000h

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPH

Bit	Name	Attribute	Description
31-0	SPH	R/W	SERVO Pulse High Register. SERVO clock is 10MHz

I/O Port: BA + 14H, 20H, 2CH, 38H, 44H, 50H, 5CH, 68H, 74H, 80H, 8CH, 98H, A4H, B0H, BCH, C8H, D4H, E0H, ECH, F8H, 104H, 110H, 11CH, 128H, 134H, 140H, 14CH, 158H, 164H, 170H, 17CH, 188H

Register Name: SERVO Control Register

Reset Value: 0000000h

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RC RC	
-------	--

Bit	Name	Attribute	Description
			SERVOx Enable Control
31	SE	R/W	1: SERVOx enable
			0: SERVOx disable
			SERVOx Continuous Mode
30	СМ	R/W	1: SERVOx Continuous Mode enable
			0: SERVOx Continuous Mode disable
			Inverse SERVO signal
29	INVS	R/W	0: default SERVO out '0', SPH specify 'I', SPL specify "0".
			1: Inverse output signal of upper case
28	Rsvd	RO	Reserved
27-0	RC	R/W	SERVOx Repeat Count. It is used when CM=0.

Technical Reference

Vortex86DX South Bridge Configuration Registers

Registe	er Offse	t:	01h – 0	0h											
Registe	er Name) :	Vendor	ID Reg	ister										
Reset V	alue:		17F3h												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							V	ID							

Bit	Name	Attribute	Description
15-0	VID	RO	This register contains a 16-bit value assigned to South Bridge Vendor ID.

Registe	r Offse	et:	03h – 0	2h											
Registe	r Name	e:	Device ID Register												
Reset V	alue:		6031h												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							D	ID							

Bit	Name	Attribute	Description
15-0	DID	RO	This register contains a 16-bit value to specify a particular device.

R	eg	iste	er O	ffse	et:		4Bh	- 4	8h																							
R	eg	iste	er N	amo	e:	I	Buff	Buffer Strength/Clock Output Control Register																								
Reset Value:							3FF	F36	600h	۱																						
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																														<u> </u>		

Rvd	GPIO4_DRV	GPIO3_3_DRV	GPIO3_2_DRV	GPIO3_1_DRV	GPIO2_DRV	GPIO1_DRV	GPIO0_DRV	Rvd	PCI_CTL_SR	PCI_CTL_DRV	PCI_DT_SR	PCI_DT_DRV	Rvd	ISACK_CTL	14M_CTL		25M_CTL	
-----	-----------	-------------	-------------	-------------	-----------	-----------	-----------	-----	------------	-------------	-----------	------------	-----	-----------	---------	--	---------	--

Bit	Name	Attribute	Description
31-30	Rvd	RO	Reserved
			GPIO4[7-0]/SERVO[31-24]/COM1 Driving Current Control
			00: 4mA
29-28	GPIO4_DRV	RW	01: 8mA
			10: 12mA
			11: 16mA (default)
21-20	GPIO2_DRV	RW	GPIO2[7-0]/SERVO[23-16]/SA[31-24] Driving Current Control

Bit	Name	Attribute	Description
			00: 4mA
			01: 8mA
			10: 12mA
			11: 16mA (default)
			GPIO1[7-0]/SERVO[15-8] Driving Current Control
			00: 4mA
19-18	GPIO1_DRV	RW	01: 8mA
			10: 12mA
			11: 16mA (default)
			GPIO0[7-0]/SERVO[7-0] Driving Current Control
			00: 4mA
17-16	GPIO0_DRV	RW	01: 8mA
			10: 12mA
			11: 16mA (default)

Register Offset:	BFh – BCh
Register Name:	On-Chip Device Control Register
Reset Value:	0000000h

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved UDP G1P G1P			IDEP
----------------------	--	--	------

Bit	Name	Attribute	Description
			ON-Chip SERVO power-down control
20	SVP	R/W	0: on-chip SERVO activate (default)
			1: on-chip SERVO power-down

Register Offset:C3-C0hRegister Name:Internal Peripheral Feature Control RegisterReset Value:032C0500h

31 30	29 28 27	26 25 24	23 22 21	20 19 18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Rsvd	IO16W	IO8W	MEM16W	MEM8W	ISACLK	Int_zw	Rsvd	IDEIS	PWM2	PWM1	PWM0	FCDC	MCLK	EMIQ	PINS6	SFCE	PINS5	PINS4	CPS	PINS2	PINS1	PINSO

Technical Reference

Bit	Name	Attribute	Description
			PINS selection for COM1 and GPIO Port 4
1	PINS1	R/W	0: 8 PINs for COM1(default)
			1: 8 PINs for GPIO port 4
			PINS selection for External SPI and GPIO Port3 [3-0]
0	PINS0	R/W	0: 4 pins for GPIO port3 [3-0] (default)
			1: 4 pins for external SPI

Register Offset:CBh – C8hRegister Name:Internal Peripheral Feature Control Register IIReset Value:0000000h

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GS[31-24] GS[23-16] GS[15-8] GS[7-0]	
--------------------------------------	--

Bit	Name	Attribute	Description	
			GPIO_P4[7-0] and SERVO[31-24] selection. This register is used only when SB	
31-24	GS[31-24]	R/W	register C0h bit1 is "1".	
51-24	63[31-24]		0: PINS for GPIO_P4 (default)	
			1: PINS for SERVO	
			GPIO_P2[7-0] and SERVO[23-16] selection. This register is used only when	
23 – 16	GS[23-16]	R/W		STRAP[1] (NB register 60h bit19) is "1".
23 - 10	63[23-10]		0: PINS for GPIO_P2 (default)	
			1: PINS for SERVO	
			GPIO_P1[7-0] and SERVO[15-8] selection.	
15 – 8	GS[15-8]	R/W	0: PINS for GPIO_P1 (default)	
			1: PINS for SERVO	
			GPIO_P0[7-0] and SERVO[7-0] selection.	
7 – 0	GS[7-0]	R/W	0: PINS for GPIO_P0 (default)	
			1: PINS for SERVO	

Register Offset:D3h – D0hRegister Name:Internal SERVO Control RegisterReset Value:0000000h

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved C 등 Rsvd SIRT	UIOA Reserved
------------------------	---------------

Technical Reference

Bit	Name	Attribute	Description
31-25	Rsvd	RO	Reserved
			Servo Clock selection
24	CLKS	R/W	0: 10MHz (default)
			1: 50MHz
			Enable/Disable Internal SERVO IO Address Decode
23	UE	R/W	0: Disable (Default)
			1: Enable
22-20	Rsvd	RO	Reserved
			SERVO IRQ Routing Table
			Bit19 Bit18 Bit17 Bit16 Routing Table
			0 0 0 Disable.
			0 0 0 1 IRQ[9]
			0 0 1 0 IRQ[3]
			0 0 1 1 IRQ[10]
			0 1 0 0 IRQ[4]
			0 1 0 1 IRQ[5]
			0 1 1 0 IRQ[7]
19-16	SIRT	R/W	0 1 1 1 IRQ[6]
			1 0 0 0 IRQ[1]
			1 0 0 1 IRQ[11]
			1 0 1 0 Reserved
			1 0 1 1 IRQ[12]
			1 1 0 0 Reserved
			1 1 0 1 IRQ[14]
			1 1 1 0 Reserved
			1 1 1 1 IRQ[15]
			These four bits are used to route SERVO IRQ to any 8259 Interrupt lines. The BIOS
			should be used to inhibit the setting of the reserved value.
15-9	UIOA	R/W	Internal SERVO IO Address. The Bit[15:9] contain the base IO address A[15:9] of
			internal SERVO.
8-0	Rsvd	RO	Reserved. All are '0's. Writing any value to these bits causes no effect.

4.SPI Registers

(Base Address Refers to the Register of index 43h-40h, IDSEL = AD11/NB of PCI Configuration Register)

IO Address	Register Name					
BA + 00h	Flash SPI Output Data Register					
BA + 01h	Flash SPI Input Data Register					
BA + 02h	Flash SPI Control Register					
BA + 03h	Flash SPI Status Register					
BA + 04h	BA + 04h Flash SPI Chip-Select Register					
BA + 05h	Flash SPI Error Status Register					
BA + 08h	External SPI Output Data Register					
BA + 09h	External SPI Input Register					
BA + 0Ah	External SPI Control Register					
BA + 0Bh	External SPI Status Register					
BA + 0Ch	External SPI Chip Select Register					
BA + 0Dh	External SPI Error Status Register					

BASE_ADDR defined on NB PCI CFG 40h

Registe	r Offse	et:	BASE_ADDR+00h				
Register Name:			Flash SPI Output Data Register				
Reset Value:							
7	6	5	4	3	2	1	0

OUTDAT

Bit	Name	Attribute	Description
7-0	OUTDA T	WO	Data output to SPI when write. No function when read.

Register Offset:			BASE_	ADDR+	-01h				
Register Name:			Flash SPI Input Register						
Reset Value:			FFh						
7	6	5	4	3	2	1	0		
	INDAT								

Bit	Name	Attribute	Description
7-1	INDAT	R/W	Data input from SPI when read. Preload data from SPI when write

Register Offset:	BASE_ADDR+02h				
Register Name:	Flash SPI Control Register				
Reset Value:	55h/5Ah (DRAM frequency <= 200MHz, >200 MHz)				
It is not recommended to modify this register when SPI operation.					

7	6	5	4	3	2	1	0
RSVD	FRE	AFDI S	FIEN		СК	DIV	

Bit	Name	Attribute	Description			
7	RSVD	RO	Reserved			
6	FRE	R/W	st read enable(This bit can be set if it is NOT AMTEL flash, and Bit 5 must be 0)			
			0: Auto-fetch enable			
5	AFDIS	R/W	1: Auto-fetch disable			
			Reset to 0 if flash ROM write protect (default).			
4	FIEN	R/W	IFO mode enable when set.			
			SPI clock divided.			
3-0	CKDIV	R/W	The SPI clock is DRAM clock/(2 * SPI clock divided) , 0 is not allowed			
			Under 45MHz is recommended for Vortex86DX internal SPI flash.			

Register Offset:			BASE_ADDR+03h				
Register Name:			Flash S	PI Statu	us Regi	ster	
Reset Value:			10h				
7	6	5	4	3	2	1	0
BUSY	FIFU	IDR	ODC		RS	VD	

Bit	Name	Attribute	escription			
7	BUSY	RO	PI controller is BUSY.			
6	FIFU	RO	IFO full			
5	IDR	RO	nput data ready when set.			
4	ODC	RO	Putput complete/FIFO empty when set.			
3-0	RSVD	RO	eserved			

Register Offset:			BASE_ADDR+04h					
Register Name:			Flash S	PI Chip	Select	Regist	er	
Reset Value:			01h					
7	6	5	4	3	2	1	0	
Reserved							CS	

Technical Reference

Bit	Name	Attribute	Description				
7-1	RSVD	RO	Reserved				
0	CS	R/W	SPI CS# is low, 1: SPI CS# is high				

Registe	r Offse	et:	BASE_ADDR+05h					
Registe	r Nam	e:	Flash SPI Error Status Register					
Reset Value:			00h					
7	6	5	4	3	2	1	0	

0	5	4	3	2	I	0
RSVD		WCT		FIUR	FIOR	FHOP
ROVD		Е	DOLE	Е	Е	Е

Bit	Name	Attribute	Description
7-5	RSVD	RO	Reserved
4	WCTE	R/WC	Error status 4, Write SPI Control Register when controller is busy. Write 1 to clear.
3	DOLE	R/WC	Error status3, Input data overlap. Write 1 to clear.
2	FIURE	R/WC	Error status2, FIFO under-run. Write 1 to clear.
1	FIORE	R/WC	Error status1, FIFO over-run. Write 1 to clear.
0	FHOPE	R/WC	Error status0, CPU fetch during SPI port operation. Write 1 to clear.

Register Offset:				BASE_ADDR+08h					
R	legiste	er Name	e :	External SPI Output Data Register					
R	leset V	alue:							
	7	6	5	4	3	2	1	0	
ſ									

Bit	Name	Attribute	Description
7-0	OUTDA T	WO	Data output to SPI when write. No function when read.

Register Offset:			BASE_ADDR+09h							
Register Name:				Externa	al SPI Ir	nput Re	gister			
Reset Value:			FFh							
	7	6	5	4	3	2	1	0		
	INDAT									

Bit	Name	Attribute	Description

Technical Reference

7-1	INDAT	RO	Data input from SPI when read. Preload data from SPI when write
-----	-------	----	---

F	Registe	er Offse	t:	BASE_	ADDR	⊦0Ah		
F	Registe	er Name	:	External SPI Control Register				
Reset Value:			15h					
	7	6	5	4	3	2	1	0
		RSVD		FIEN	CKDIV			

Bit	Name	Attribute	Description
7-5	RSVD	RO	Reserved
4	FIEN	R/W	FIFO mode enable when set.
3-0 CKDIV		D M/	SPI clock divided.
3-0	CRDIV	R/W	The SPI clock is DRAM clock/(2 * SPI clock divided) , 0 is not allowed

Registe	er Offse	et: I	BASE_/	ADDR+	0Bh			
Registe	er Name	e: I	External SPI Status Register					
Reset V	/alue:		10h					
7	6	5	4	3	2	1	0	
BUSY	FIFU	IDR	ODC	RSVD				

Bit	Name	Attribute	escription		
7	BUSY	RO	PI controller is BUSY.		
6	FIFU	RO	FIFO full		
5	IDR	RO	Input data ready when set.		
4	ODC	RO	Output complete/FIFO empty when set.		
3-0	RSVD	RO	Reserved		

Register Offset:			BASE_	ADDR-	-0Ch			
Register Name:			External SPI Chip Select Register					
Reset Value:			01h					
7	6	5	4	3	2	1	0	
			Reserve	d			CS	

Bit	Name	Attribute	Description
7-1	RSVD	RO	Reserved
0	CS	R/W	0: SPI CS# is low, 1: SPI CS# is high

SPI Registers	
---------------	--

Registe	r Offse	et:	BASE_ADDR+0Dh				
Registe	r Nam	e:	External SPI Error Status Register				
Reset Value:			00h				
7	6	5	4	3	2	1	0

Ũ	U		U	-	1	0
RSVD		WCT E	DOLE	FIUR E	FIOR E	RSVD

Bit	Name	Attribute	Description
7-5	RSVD	RO	Reserved
4	WCTE	R/WC	Error status 4, Write SPI Control Register when controller is busy. Write 1 to clear.
3	DOLE	R/WC	Error status3, Input data overlap. Write 1 to clear.
2	FIURE	R/WC	Error status2, FIFO under-run. Write 1 to clear.
1	FIORE	R/WC	Error status1, FIFO over-run. Write 1 to clear.
0	RSVD	RO	Reserved